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Identification of a nonlinear model for the electrical
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Abstract

In this contribution, a dynamical nonlinear model structure for the identification of the electrical behavior of a solid oxide fuel cell is developed
using expert knowledge from material scientists. The estimation of the model parameters can be realized by an iterative algorithm based on
analytical equations to determine parameter estimates in each iteration step. An enhancement of the estimation can be achieved by an additional
numerical optimization of the model parameters. Furthermore, this model can be extended to represent the time dependency of the model due to
deterioration of the fuel cell materials.
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. Introduction

For many purposes a mathematical model of a solid oxide
uel cell (SOFC) is required. For instance, this model allows to
eparate the formation effects from the usual current/voltage-
ynamics during the first startup procedure of a SOFC [1].
uring operation, it could be used to develop a control strategy

or load changes. And finally, a dynamical model can represent
he effects of deterioration of a SOFC-system. Recent publica-
ions like [2–4]. address the modeling of these systems. In [2]
nd [4] a physical approach was used to represent the dynamic
ehavior of the fuel cell. To obtain a lower order linear model
f the SOFC-dynamics an identification procedure was pro-
osed in [3]. The paper is organized as follows: in Section 2, an
ppropriate model structure will be developed. Afterwards, an
dentification for a time-invariant parametric model is proposed
n Section 3. In order to improve the mathematical representa-
ion, a time-variant model will be estimated in Section 4. Finally,
n Section 5 a simple approach to represent degradation effects
s given.

2. Development of a model structure

In this paragraph a model structure for the current-
density/voltage-loss-behavior will be developed. The cathode
material of the considered SOFC is (La,Sr)MnO3− which is
abbreviated as LSM. Yttrium doped Zirconia 8YSZ (8 mol%
Y2O3 doped Zr02) is the electrolyte material. Finally, the anode
consists of a Ni/8YSZ-cermet.

In Fig. 1, measurement data of a SOFC are given. Based on
the same measurement, the corresponding voltage-loss versus
current-density is depicted in Fig. 2. The latter plot shows that
the electrical behavior is dominated by a static transfer element
and that dynamic effects are less significant. This suggests the
following modeling approach

u(kT ) = uN (kT ) + uH (kT ), (1)

uN (kT ) = N(jc(kT )), (2)

uH (kT ) = Z−1
{

L(z−1)
}

∗ φ(jc(kT )), (3)

where u(kT) is the voltage loss and jc(kT) denominates the cur-
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rent density of the fuel cell, T is the constant sampling time and k
is the index for the sampled measurement data. In (1), the voltage
loss is the sum of a nonlinear function N(jc) of the current density
jc and the response of a Hammerstein-model [5] consisting of a
l
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inear system L(z−l) whose input signal is a function φ(jc) of the
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Fig. 1. Current-density/voltage-loss-measurements vs. time.

current density jc. The symbol “∗” in (3) indicates the convolu-
tion operator. The current-density/voltage-loss-measurement in
Fig. 2 is mainly represented by the function N(jc). Some assump-
tions have to be made in order to specify the model structure
(1)–(3) in more detail. It is known that two reversible processes
in the materials are responsible for the dynamic behavior of the
SOFC which will be represented by the linear system L(z−1) and
the unknown function φ(jc):

(1) Temperature effect: a changing current density causes a tem-
perature change of the material which results in a decrease
or an increase of conductivity. The time constant of this
process is about 3–5 min.

(2) Structural effect: a changing current density causes a
change of the local oxygen partial pressure at the cath-
ode/electrolyte interface. The oxygen partial pressure has
an impact on the oxygen vacancy concentration in the cath-
ode grain [6]. Therefore, the size of the electrochemical
active triple phase boundary at the cathode/eletrolyte inter-
face is affected. In Fig. 3, the triple phase boundary at
the cathode–electrolyte interface in equilibrium is depicted
schematically. An instantaneous current density step causes
an increase of the area specific current density at the triple
phase boundary. This effect is shown in Fig. 4. The size of
the triple phase boundary increases due to the higher area
specific current density. This effect could be explained by

Fig. 3. TPB in equilibrium before a current density change.

Fig. 4. TPB immediately after an increase of the current density.

triple phase boundary is in the equilibrium state for the new
higher current density (Fig. 5). Thus, the conductivity is
increased by the increase of the triple phase boundary.

The model order of the linear system L(z−1) is chosen as
nL = 2, in order to represent the two considered dynamical
effects, leading to the transfer function

L(z−1) = b0 + b1z
−1 + b2z

−2

1 + a1z−1 + a2z−2 .

In order to separate the stationary behavior and the dynami-
cal behavior, the linear systems output signal has to vanish for
constant input signals. For constant input signals jc, the output
signal is solely determined by the nonlinear function N(jc). This
leads to a constraint for the numerator of the linear system. To
meet this condition, the linear system L(z−1) has to have a dif-
ferentiating behavior. Time discrete systems with a zero at z = 1
show this property. The constraint

b0 + b1 + b2 = 0 (4)

for the model parameters b0, b1 and b2 guarantees that the linear
systems response equals zero in steady-state.

It is also known that the time constants of the two processes
depend on the sign of djc/dt = j̇c. Therefore, the estimation
o
i
c
a

a depletion of oxygen in the cathode grain. After 1–5 h, the

Fig. 2. Current-density vs. voltage-loss.
f two different linear systems is necessary, one system for
ncreasing current densities and a different one for decreasing
urrent densities. For j̇c ≥ 0 the linear model L(z−1) is denoted
s Lup(z−1) and for j̇c < 0 it is denoted as Ldown(z−1).

Fig. 5. TPB in equilibrium after the current increase.
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Fig. 6. Structure of the identification model in most cases.

For the nonlinearity N(jc), a polynomial approach

N(jc) = c0 + c1jc + c2j
2
c + · · · + cnN jnN

c (5)

is proposed. The degree nN = 3 for the polynomial N(jc) in (5) is
adequate in most cases.

This model structure is depicted in Fig. 6. In the sequel, the
unknown model parameters of this model structure will be deter-
mined from measurement data.

3. Iterative identification of the model parameters of the
time-invariant model

In this section, a parameter identification algorithm for the
time-invariant model structure in Fig. 6 is presented. By analysis
of measurement results, it turns out that the unknown func-
tion φ(jc) could be chosen as φ(jc) = j2

c . Therefore, the model
parameters of the time-invariant model structure in Fig. 6 are

θTI = [c0, c1, c2, c3; a1,up, a2,up; a1,down, a2,down;

b0,up, b1,up, b2,up; b0,down, b1,down, b2,down]. (6)

The indices “up” and “down” of some model parameters in
(6) denote their affiliation to the linear submodels Lup (z−1) or
Ldown (z−1).

l
c

J

i
p
f
v
t
v
i
t
d
b
c

Fig. 7. Function chart of the identification algorithm.

(1) The difference signal uN,ident = umeas(kT) − uH(kT) is calcu-
lated using the up to date Hammerstein-Model uH(kT). In the
first initialization, this signal is set to uH(kT) = 0, to neglect
the influence of the small signal uH(kT) on the absolute value
u(k) (see Fig. 2).

(2) The model parameters θN of the polynomial N(jc) are esti-
mated by the least-squares-algorithm [5,7] using uN,ident
which was computed in step 1.

(3) With the model parameters θN it is possible to separate
the signals uH(kT) and uN(kT) in the measurement data
umeas(kT). The signal uH,ident(kT) = umeas(kT) − uN(kT) is
computed.

(4) Using uH,ident(kT), the linear subsystems Lup(z−1) and
Ldown(z−1) will be estimated taking constraint (4) into
account. This estimation is computed with Eq. (A.5),
derived in Appendix A.

(5) Using all currently estimated parameters gives the modeling
error of the model parameter set J(θTI) = �e2(k).

(6) If J(θTI) < Jmax is not fulfilled, the algorithm jumps to step
1 using the estimated signal uH(kT).

If J(θTI) < Jmax, a numerical minimization of J(θTI) with
respect to the model parameters θTI gives the improved esti-
The basic approach in parameter identification is to formu-
ate the identification problem as an optimization problem. Most
ommonly, a quadratic performance index

TI(θTI) =
N∑

k=1

(
ymeas(k) − ymodel(θTI, k)

)2 (7)

s defined, where ymeas(k) are measured, noisy data from the out-
ut of the process and ymodel(θTI, k) are the simulated output data
rom the used identification model (Fig. 6) with the parameter
ector θTI. A numerical optimization algorithm could minimize
he function (7) under the constraint (4). With sufficient initial
alues for this optimization, the determination of the global min-
ma of the function JTI(θTI) is more likely. The determination of
hese initial values is given by an iterative algorithm using the
ominating influence of the static element N(jc) on the transfer
ehavior. The steps of this algorithm are depicted in the function
hart in Fig. 7:
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Fig. 8. Voltage loss of the model and measurement data.

mated value for θ̂TI. This minimization is necessary because it
is not guaranteed that the iterative execution of steps 1–5 yields
the global minimum of J(θTI).

The result of an estimation using the measurement data from
Fig. 1 is shown in Fig. 8. This plot shows that the model struc-
ture (1)–(3) is an appropriate modeling approach, because the
modeling error is very small. In Appendix B, a transformation is
given to separate the two dynamical processes. With (B.7), the
time constants of the two processes can be determined, which
makes the allocation of the two processes possible. For this iden-
tification result, the time constants are:

τ1,up = 3.52 min τ1,down = 4.08 min

τ2,up = 2.47 h τ2,down = 4.9 h
(8)

The values for the time constants in (8) indicate that process 1
is the temperature effect and process 2 is the structural effect. In
Fig. 9, the voltage losses of these two processes are shown for a
section of the measurement period. The term uTE designates the
temperature effect voltage and uSE designates the voltage of the
structural effect. The plot shows that the voltage-loss of the struc-

Fig. 10. Identified current-density/voltage-loss-characteristic N(jc).

tural effect is by far more significant for the dynamical behavior.
An additional advantage of the identification procedure pro-
posed in this paper is that the current-density/voltage-loss char-
acteristic could be estimated simultaneously to the estimation
of the SOFC-dynamics. The estimated current-density/voltage-
loss characteristic is shown in Fig. 10.

The proposed identification method was also applied suc-
cessfully on other measurement data taken from solid oxide fuel
cells, resulting to different values for the model parameters than
those determined in this paper.

4. Time-variant model identification

Until now, a time-invariant parametric model was identified.
However, it is known that the electrical behavior of SOFC-
systems changes during large time-periods. Fig. 11 demonstrates
the time variance of the considered fuel cell. The continuous line
is the current-density/voltage-loss measurement which was used
for the identification of the voltage loss model in Section 3. The
measurement data between 410 and 490 h is depicted as a dotted
line in the same figure. Clearly, it can be recognized by analyz-
ing this plot that the current-density/voltage-loss characteristic
could not be assumed as time-invariant. The linear component of
the characteristic c1 has changed most significant during oper-
ation of the fuel cell. Therefore, a time-variant model for the
v
t

Fig. 9. Separation of the two dynamical effects.
oltage loss will be estimated in this section in order to improve
he representation of the real physical behavior.

Fig. 11. Measurements of current-density vs. voltage-loss.
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A simple but common method used in the field of iden-
tification is the minimization of an exponentially weighted
sum

JTV(θTV, i) =
i∑

k=0

e−β(i−k)︸ ︷︷ ︸
wβ(k)

(ymeas(k) − ymodel(θTV(i), k))2 (9)

of the modeling error. The weighting factor has to weight the
present output error stronger than the errors from the past [8].
The forgetting factor β > 0 has to be chosen suitable to detect
variations of the model parameters. On the other hand, the
forgetting factor should not be too large in order to keep the
influence of the measurement noise on the identification result
limited. For each index value i a numerical minimization of the
weighted performance index (9) gives a snapshot of the sys-
tem behavior at the time iT, because the vector θTI(i) of the
model parameters is also time-variant. The numerical minimiza-
tion uses the previous estimated time-variant parameter-vector
θ̂TI(i − 1) as the initial value for the estimation of the current
estimation of θ̂TI(i), because the changes between two time
instants can be assumed as very small. The first identifica-
tion uses the time-invariant parameters θ̂TI as initial values.In
advance of the execution of the time-variant identification, it
is necessary to decide which model parameters will be time
variant. A high degree of freedom causes a very good identifi-
cation accuracy, but it will not be possible to interpret the result.
T
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the change of c1. This result is surprising, because it shows
that an increase of voltage-loss has a more significant influ-
ence on the degradation of the SOFC than constant high current
densities.

This surprising new result can be explained by the structural
effect. In Figs. 3–5, this effect is sketched schematically for a cur-
rent density increase. It takes 1–5 h to get in the equilibrium state.
During this time period the triple-phase-boundary increases and
causes a decrease of the voltage-loss. During the settling time,
the voltage loss and the area specific current density at the triple-
phase-boundary is very high. Area specific current densities have
a strong influence on the materials at the triple phase boundary.
In [1], the area specific current density causes a decrease of
losses during the formation of the cathode/electrolyte-interface
of SOFCs. Here, the locally high loss during the settling time
after an increase of current density causes degradation of the
SOFC (increase of the ohmic losses), the efficiency of the cell
diminishes. This observed degradation process will be modeled
in the next section.

5. Model for the degradation effects

In order to predict the status of the fuel cell materials, the
observed degradation effect has to be represented by a math-
ematical model. As demonstrated in Fig. 12, an increase of
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herefore, the degree of freedom has to be reduced. As already
entioned, Fig. 11 demonstrates that the parameter c1, which

epresents the ohmic component of the characteristic, changes
ost significantly. Therefore, it will be sufficient to assume that

nly c1 varies with respect to time. All other model parameters
ill be assumed as time-invariant. The result of the numerical
ptimization for the identification of the time-variant c1(i) is
hown in Fig. 12. The identification algorithm for the param-
ter θ̂TI starts at i = 5690. Fig. 12 shows that the parameter c1
ncreases monotonically, if the voltage loss is increasing. A con-
tant or a decreasing voltage-loss has a very faint influence on

Fig. 12. Identification of the time-variant parameter c1(k).
he current density causes an increase of the model parame-
er c1, which represents the ohmic resistance in the current-
ensity/voltage-loss-characteristic N(jc). A possible explanation
or this increase is a locally concentrated high current density at
he triple-phase-boundary at the cathode/electrolyte-interface.

possible mathematical approach is the use of the voltage loss
f the structural effect uSE as an input signal of a discrete-time
ntegrator. To take into account that c1 does not increase for
ecreasing current densities, only positive values of uSE should
ave an impact on the degradation in the model. The result is the
odel

1(k) = c1(k − 1) + Tδ(u+
SE(kT ))

= c1(k − 1) + T [d0 + d1u
+
SE(kT )) + d2(u+

SE(kT ))
2

+ d3(u+
SE(kT ))

3 + d4(u+
SE(kT ))

4
], (10)

hich is used to represent the degradation (the increase of c1),
ith

+
SE =

{
uSE for uSE ≥ 0

0 for uSE < 0

s the input signal. T δ(u+
SE(kT )) is the difference

1(k) − c1(k − 1), hence the δ value could be interpreted
s the velocity of the degradation. The determination of the
odel parameters

deg = [d0 d1 d2 d3 d4]
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Fig. 13. Voltage u+
SE and time-dependent parameter c1.

of the degradation model (10) is done by a numerical minimiza-
tion of the performance index

Jdeg(θdeg) =
N∑

k=1

(ymeas(k) − ymodel(θdeg, k))2

for the output error ymeas(k) − ymodel of the voltage loss model,
where c1(k) is time-variant and given by (10). The other
model parameters are the time-invariant estimates from Sec-
tion 3. In Fig. 13, the estimated function δ(u+

SE) is shown
for the measurement data. The interception point of the plot
with the δ-axis gives the increase of c1 for the steady state
operation (uH = u+

SE = 0). For 0 < u+
SE < 1 mV the degrada-

tion velocity δ(u+
SE(kT )) is increasing monotonically. For high

values u+
SE < 1 mV, δ is decreasing. In [1], it was demon-

strated how high area specific currents could improve the cell
performance during the formation process. Thus, a possible
physical explanation for the smaller degradation velocity δ is
that the formation of the cathode/electrolyte-interface is con-
tinued, due to very high area specific current densities for
u+

SE < 1 mV.

6. Conclusions and outlook

A useful model structure for the current-density/voltage-
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systems in order to allow a long durability, because the expected
degradation of the fuel cell materials can be predicted by this
model.
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Appendix A. Least-squares-estimation with a linear
constraint

Given is the performance index function

J(θ) = (y − Mθ)T (y − Mθ) (A.1)

and the linear equation

Nθ = b. (A.2)

Objective is finding a θ̂ which minimizes the function (A.1) and
meets the constraint (A.2). This problem will be solved by using
the method of the Lagrangian multipliers. The new function

L(θ) = J(θ) + λT (Nθ − b)

is defined, whose derivation with respect to the variable θ and
t

t
a

θ

i

P

e

A

L

h

L

w
t

oss dynamic for a single SOFC is developed. The model
tructure of the generally nonlinear model consists of a static
lement for the steady-state equilibrium characteristic and a
witching Hammerstein-Modell for transitions between differ-
nt equilibrium states. A simple and fast identification algo-
ithm is developed to identify the model parameters of this
ime invariant model. However, for long term simulations of
he voltage-loss of a fuel cell, the identified time invariant

odel is not suitable. This can be explained by changes in
he cathode/electrolyte-interface caused by a locally high area
pecific current density. In order to represent the time depen-
ency, a time-variant model is identified using an exponentially
eighted performance index. A numerical optimization gives

he estimated value for a significant time dependent parameter.
sing the time dependency of the voltage-loss model, a sim-
le approach is given to represent the coherence leading to the
uel cell degradation during fast changes of the current den-
ity. A low order nonlinear degradation model is estimated by
numerical optimization algorithm. This model can be used

o develop control strategies for a safe operation of SOFC-
he Lagrangian multiplier λ gives the necessary conditions

∂L(θ)

∂θ

∣∣∣∣
θ=θ̂

= −2MT y + 2MT Mθ̂ + NT λ = 0, (A.3)

∂L(θ)

∂λ

∣∣∣∣
θ=θ̂

= Nθ̂ − b = 0 (A.4)

o solve this optimization problem. Using the conditions (A.3)
nd (A.4) gives the solution

ˆ = PMT y + PNT Q(b − NPMT y) (A.5)

f the matrices

= (MT M)
−1

and Q = (NT M)
−1

NT )−1

xists.

ppendix B. Separation of the dynamic effects

The transfer function of the linear system

(z−1) = b0 + b1z
−1 + b2z

−2

1 + a1z − 1 + a2z−2 , b0 + b1 + b2 = 0 (B.1)

as to be transformed on the form

(z−1) = k1
1 − z−1

1 − p1z−1︸ ︷︷ ︸
L1(z−1)

+ k2
1 − z−1

1 − p2z−1︸ ︷︷ ︸
L2(z−1)

(B.2)

here the two dynamic effects L1(z−1) and L2(z−1) can be inves-
igated separately. The representation of (B.2) is not unique,
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because two solutions are possible due to the permutability of
the parameters. Thus, one possible solution is

k1 = b0 +
b2 − b0

(
(−a1/2) +

√
(a2

1/4) − a2

)
−(a1/2) +

√
(a2

1/4) − a2 − (a2)/

(
−(a1/2) +

√
(a2

1/4) − a2

) , (B.3)

k2 =
b0

(
−(a1/2) +

√
(a2

1/4) − a2

)
− b2

−(a1/2) +
√

(a2
1/4) − a2 −

(
a2/

(
−(a1/2) +

√
(a2

1/4) − a2

)) , (B.4)

p1 = a2

−(a1/2) +
√

(a2
1/4) − a2

, (B.5)

p2 = −a1

2
+

√
a2

1

4
− a2. (B.6)

The time constants of the two processes are

τi = − T

ln pi

, 0 < pi < 1, pi ∈ R i ∈ {1, 2}. (B.7)
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